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A mathematical model of the syntholl is suggested. The term synthon is used to denote one or 
several molecules or their part(s) with free valences. The notion of isomeric synthons on a set 
of atoms A and that of the Family of Isomeric Synthons FIS(A) are introduced. Matrix operators 
are defined for modelling the elementary steps of reorganization of electrons during reactions. 
A new notion of the reaction distance of isomeric synthons is introduced as the smallest number 
of elementary steps of reorganization of electrons during the reaction transforming one synthon 
into another. 

--------------- .. --.- -- -------------

Recently we concerned ourselves with a formal study of electronic processes at 
monatomic reaction centres 1 (valence states of atoms) and at diatomic reaction 
centres 2 (atomic vectors). Although this concept enables the majority of the decisive 
so-called elementary steps of reorganization of electrons during chemical reactions 
to be treated, it is not amenable to all steps. Formally, all steps of reorganization 
of valence electrons can be treated by applying elementary matrix operators, as are 
included in the ASSO R program3 and constitute a part of the algebraic model of 
constitutional chemistry4. An alternative approach consists of the use of elementary 
reaction graph operators5 within the graph model of constitutional chemistry6,7. 

The two models allow for the description of the topological structure of a molecule 
and of the global electronic phenomena occurring during a reaction. However, 
relying on a stoichiometric basis and requiring conservation of the global number 
of valence electrons within the systems, the models do not enable us to flexibly treat 
part of molecules (reaction centres). Their applicability is additionally reduced by 
the fact that the modelling of the elementary electronic processes in them rests to 
a high degree on a combinatorial basis. Although these shortcomings do not detract 
from the wide use of these models in chemistry, they have stimulated the setting up 
of a novel model that may be more flexible in relation to the deductive planning 

* Part XI in the series Mathematical Model of Organic Chemistry; Part X: Cas. Pest. 
Matern., in press. 

Collection Czechoslovak Chern. Cornrnun. (Vol. 53) (1988) 



1008 Ko~a: 

of organic syntheses in both the forward and backward directions and to proposals 
of reaction mechanisms. This model is the subject of the present work. 

Mathematical Model of Synthons and Their Reactions 

The fundamental concept underlying the rr.odel in question, which is also one of the 
primary concepts in theoretical considerations of the synthesizing chemist, is the 
generalized concept of the synthon. In its original senses, the synthon is understood 
as that part of the substrate at which some change occurs during the chemical reaction 
of interest. ]n our model, the synthon is one or more whole molecules or a part of 
a molecule. The structure of the synthon is built up on a fixed set of atoms A, denoted 
symbolically as SeA). This concept has been derived from that of an ensemble of 
molecules EM(A), used4,9 for the set of summary formulae of one or several molecules 
constructed from atoms of set A. Against the definition of EM(A), SeA) is extended 
in that it may involve free valences, i.e. bonds that do not connect two atoms but 
which only start from an atom. Such bonds are construed as bonds between a parti
cular real atom of the synthon and a free, so-called virtual, atom, which is not 
specified. The concept of virtual atoms adds appreciably to the deductive power 
of the model, various concrete atoms or groups being conceived in place of a virtual 
atom in particular cases. 

Example 1. A synthon SeA) on a set of atoms A = {C, 0, 0, H} is, for instance, 
the structure 

Two synthons SeA), S(B) are said to be isomeric if they are defined on the same 
set of atoms, hence, if A = B. The set of all isomeric synthons built on a set A will 
be referred to as a Family of Isomeric Synthons and denoted FIS(A), in analogy 
with FIEM(A) built Up4,9 as a set of all isomeric EM(A). In our model the definition 
of isomerism is looser because it does not require conservation of the global number 
of valence electrons, thereby enabling also nonstoichiometr:c processes to be model
led. The formal study of the constitution chemistry of a set of atoms A reduces to 
a study of FIS(A). The fundamental notion of the model is that of the valence state 
of an atom 1 •9- 13 . 

Example 2. For A = {C, 0, H, H, Br}, the following structures are synthons 
SI(A) through Ss(A) included in FIS(A): 

I -
SI(A): -C-(}--H + H-Brl 

I -
I 

S4(A): -C-Brl + H-(}--H 

I 
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I 
S2(A): --C(+) --O-H + H-Brl 

I 

I 

SJ(A):-C-o--H I H(+) 4 -8rl 
I -

Matrix Model of Synthon 

Formally, a synthon S(A) on a set of atoms A = {AI' Az, ... , An} is characterized 
by the number and kind of atoms involved and by the localization of chemical 
bonds and lone valence electrons between the atoms and at the atoms. Thus the 
chemical constitution expressed by the electronic formula is subject to treatment. 

Mathematically, a synthon is expressed by the so-called synthon BE-matrix 
(SBE, henceforth referred to as the S-matrix), M = (mij)' which off the main dia
gonal is defined as the BE-matrix4 .9 and the mjj elements are the four-component 
vectors of the valence states of the atoms 1,9, II A j • It is clear that M is a symmetric 
square matrix of rank n. The headings of the rows and columns contain the individual 
atoms from set A. 

Example 3. The S-matrix of the synthon SI(A) from Example 2 is 

c 0 H H Br 
C (0,4,0.0) 1 ° ° ° 0 I (4,2,0,0) 1 ° ° H ° 1 (0,1,0,0) ° ° H ° ° ° (0,1,0,0) 1 
Br ° ° ° 1 (6, I, 0, 0) 

It is often convenient to work with a part of the synthon S(A) only, a so-called 
subsynthon, which will be defined as fellows. Given a s),nthon S(A) on set A and 
a synthol1 S(X) on set X, w;th S-matrices M and M', respectively, we say that 
synthol1 S(X) is a subs,I'l1thon of 5)'l1thol1 S(A) if 

I. X is a subset of set A, 

2. M' is a submatrix of matrix M. 

Exa 111 pie 4. Consider sets A = {C, 0, H, H, Br}, X = {C, O} and sYl1thons 
I 

SI(A) from Example 2 and its S-matrix from Example 3, SI(X) = ---C-O and its 
S-matrix I -

C (0, 4, 0, 0) 1 
o 1 (4,2,0,0) 
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S'(X) = '::C<+)-2- and its S-matrix 

C (0,3,0,0) 1 
o 1 (4,2,0,0) 

Now, synthon Sl{X) is a subsynthon of synthon Sl{A) whereas synthon S'(X) is 
not, the S-matrix of the latter being no submatrix of the S-matrix of synthon SI(A). 

It is clear from the definition of the subsynthon as well as from Example 4 that 
the property of "being a subsynthon" preserves the valence states of all atoms with 
respect to the initial synthon. SeX) being a subsynthon of synthon SeA) will be denoted 
Sex) c SeA). . 

Matrix Model of Reactions of Synthon 

The underlying principle of this model is the fact that a chemical recti on is a process 
during which reorganization of bonds and lone valence electrons takes place. This 
process is described by the so-called synthon reaction matrix (SR-matrix), which 
is an analogy of the R_matrix4 •9 •13 or the R-graph 5 • The SR-matrix is defined for 
each pair of synthons SeA), S'(A) belonging to a FIS(A). For the reaction SeA) -+ 

-+ S'(A) the SR-matrix, P, is defined as 

P = M' - M, (1) 

where M and M' are the S-matrices of the two synthons, respectively. This operation 
of subtraction consists of subtraction of matrices for the off-diagonal elements 
and subtraction of vectors for the main diagonal elements. 

Example 5. 
I 

Consider the reaction SeA) -. S'(A) for synthons SeA) = H-C-
I 

-C-Brl and S'(A) = H-Brl + ....... C=C· .... I - - ,; ....... 
I 

The SR-matrix for the corresponding 

change, P, is 

H (0, 1,0,0) 0 0 
C 0 (0,2,1,0) 2 0 
C02 (0,2, 1,0) 0 
Br 0 0 (6,1,0,0) 

(0, 1,0,0) 1 0 0 
1 (0, 4, 0, 0) 1 0 
o 1 (0,4,0,0) 1 
o 0 1 (6, 1, 0, 0) 
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(0,0,0,0) -1 0 
-1 (0,-2,1,0) 1 0 

o 1 (0, -2, 1,0) -1 
1 0 -I (0,0,0,0) 

It is clear that emerging from subtraction of two symmetric matrices, the SR
-matrix is symmetric. In contrast to the R-matrix, the sum of all elements of the 
SR-matrix need not be equal to zero. 

The chemical reaction is represented in the model by the matrix equation 

M + P = M' (2) 

which is directly derived from Eq. (1); here M and M' are the S-matrices of the educts 
and products, respectively, P is the corresponding SR-matrix. 

Elementary Conversions of Synthon 

Now, concentrate on the elementary electronic processes at a synthon. The concept 
is based on the treatment of elementary processes of reorganization of electrons 1.11.12 

and the definition of the elementary electronic processes in the ASSO R program 3 • 

Four types of elementary matrix operators are introduced for modelling the ele
mentary electronic processes. 

1. Operator ~~} for the electrofugal (from the viewpoint of the i-th atom) dissocia
tion of bond between the i-th and j-th atoms, and operator -~:! for association of the 
same kind; k denotes the multiplicity of the bond concerned. 

2. Operator /l~} for the nucleofugal (from the viewpoint of the i-th atom) dissocia
tion of bond between the i-th and j-th atoms, and operator - /l!} for association 
of the same kind. It is clear that /l~} = ~tl (i =1= j). 

3. Operator y!} for the homolysis of bond between the i-th and j-th atoms, and 
_y!i for association of the radicals. 

4. Operators ,sV and - ,s;} for redox processes associated with the oxidation and 
reduction, respectively, of the i-th atom; here I = 1 or 2 according to the number 
of electrons exchanged. 

Operators ~!I, _~!i; /l!i, - /l!i; y!l, - y!i; and 15;1, _.,s;i refer to situations where 
a virtual atom is involved instead of the j-th atom. The concrete forms of the opera
tors are given in Table I. 

Matrix representation of the elementary operators is matrices of the same kind 
as the SR-matrices; the application of the elementary operators is accomplished by 
matrix addition according to Eq. (2) where P is the corresponding elementary matrix 
operator from Table I. 
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TABLE I 

Matrix form of elementary operators. All elements that are not given explicitly are zeroes; 
pl j = rx.{i 

Matrix and process modelled 
Operator 

k= k=2 k=3 
- ----- - ---_._--_. - --------~-- ---

(l i i 
k 

j j j 

i ... (2, -1,0,0) '" -I ... (2, I. -1,0) ... -1 ... (2, 0, I, -I) ... -I 

j ....... -I ... (0, - I. 0. 0) ....... -1 ... (0, I, -1,0) ....... -I ... (0, 0, I, -I) 

I-J -)0 i -.- J 

i ... (2, - I, 0, 0) ... 

1- ->- i 

i ... (0, -1, 0, 0) ... 

I-~ I 

j 

I=J -)0 I-J 

'" (2, I, -1, 0) ... 

T=~ 1-

... (0,1,-1,0) ... 

I=~ 1-

j 

.,. (2,0, I, -I) ... 

1== ~'" 1= 

. .. (0, 0, I, - 1) ... 

I:==c -)0 1= 

j 

i ... (I, - 1, 0, 0) ... - I ... . .. (I, I, - I, 0) ... - 1 ... . .. (I, 0, I, - I) ... - I 

j ....... -I ... (I, -1,0,0) ....... -I ... (I, I, -1,0) ....... -I ... (1, 0, I, -I) 

I-J -)0 J' _I- J" 

i ... (J, - I, 0, 0) ... 

1- -)0 r 

j 

T=J ~ J'-J" 

. " (I, 1, - I, 0) ... 

I=~ r-

j 

i ... ( - 1, 0, 0, 0) .... ° ... ( - 2, 0, 0, 0) .... ° 
j ........... 0 ... (1,0,0,0) ........... 0 ... (2,0,0,0) 

r + J -)0 [ - '- J' I -,- J - I + J 

i ... ( - 1, 0, 0, 0) ... 

r -)0 T 

. .. (- 2, 0, 0, 0) ... 

I ->- I 

. .. (I, 0, I, - I) ... 

1== ~ I"= 

a k is replaced by I in the heading. 
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Example 6. By application of operator «1,3 to synthon S(A) from Example 5 we 
obtain matrix P: 

H (0,1,0,0) 1 0 0 
C 1 (0,4,0,0) 1 0 
C 0 1 (0,4,0,0) 1 + 
Br 0 0 1 (6, 1,0,0) 

(0,0,0,0) 0 0 0 
0 (0,0,0,0) 0 0 

+ 0 0 (0, -1,0,0) -I 
0 0 -1 (2, -1,0,0) 

(0, 1,0,0) 1 0 0 
1 (0,4,0,0) 1 0 
0 1 (0,3,0,0) 0 
0 0 0 (8,0,0,0) 

I I I I 
Chemically interpreted, H-C-C-Brl -+ H-C-·C(+) + IBr!(-). SO, the first step 

I I - I I -
of elimination or substitution proceeding by the monomolecular mechanism is 
obtained. 

Isomeric Synthons and the FIS(A) Graph Concept 

It will be convenient for practical applications to model the set FIS(A) by the so
-called FIS(A) graph, denoted GFIS(A) and defined in terms of the ordered pair 
V, E as 

GFIS(A) = (V, E) , (3) 

where Vis the set of all synthons belonging to FIS(A) and E is the set of unoriented 
edges. An edge exists between vertices x and y if an elementary conversion trans
forming synthon x into synthon y exists; hence, 

V = {VI' v2 , ... , vnl Vi E FIS(A)} (4) 

E = {{x, y} I x, Y E V 1\ 3 0 E 0 such that M + 0 = M'} , (5) 

where 0 is the set of elementary operators defined in Table I and M and M' are 
matrices of synthons x and y, respectively. 

A part of the graph GFIS(A) for A = {C, C, 0, H} is shown in Scheme 1. The 
entire graph, even for diatomic synthons, contains too many vertices to lend itself 
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I I 
-C-C-l 

I I 
+H-Q-2 

I I 
-C-C-1 

I I 

I 1(_)_ 
-C-C-O-H 

I /\ -

I _(_)_ 
3-C-C-0-H 

I I -

SCHEME 1 

/ 

I I 
-C-C(·) 

I I 
+H-Q-2 

I I 
-C-C'·) 

I I 
+H-QI,-l 

/ 
4 

, I _ 
3-C-C-0-H 

I I -

(_) I I _ 
IC-C-O-H 
I I -

I (.) _ (1 
3-C-C-01- ---

I I -

4 
I I -C) 

3-C-C-01-
I I -

I t 
3-C-C(·) 

I I 
+H-Qt) 

I t (-)IC-C(·) 

I I 
+H-QI(-) 

Koea: 

I _ 
3-C-C=0 

I I -

I t (-)IC-C(+) 

I I 
+-Q-H 

+-Q-H 

A section of the graph GF1S(A) for A = {C, c, 0, H}. The numbers label formally some virtual 
vertices to make for a good observation of changes on them if any 

to graphical presentation. The lower estimate of the number of vertices in the graph 
F FIS(A) for synthons on various sets is given in Table II. Subgraphs of graph GFIS(A) 

are sufficient for practical applications; they can be of use particularly for examining 
the precursors and synthetic successors of a synthon during synthesis and reaction 
mechanisms. Reaction mechanisms are treated as time-ordered successions of 
elementary steps of electron reorganizations14, represented by paths in the graph 
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GFIS(A)' In the subgraph in Scheme 1, for instance, the paths modelling the SN1 
I 

and SN2 mechanisms on the subsynthon -C-O-H or the El mechanism on the 
I I I -

-C-C-O-H synthon can be traced. 
I I -

The graph GFIS(A) is also the starting structure for the definition of a notion that 
is of importance in the model treated, viz that of the reaction distance. 

Reaction Distance 

The concept of the reaction distance emerges from that of the chemical distance, 
which is the sum of absolute values of elements of the R-matrix4 •9 (also modified 
as the minimum value of this sum for various arrangements of atoms in BE-matrices 
of the educt and product6). Now, we introduce this new concept of the reaction 
distance (RD) as the graph distance in the GFIS(A) graph as follows. Let synthons 
S(A), S'(A) be elements of FIS(A) and x and y, vertices in the graph GFIS(A) represen
ting the two synthons respectively. Then 

RD(S(A), S'(A)) = D(x, y), (6) 

where D is the length of the shortest path between vertices x and y in the graph 
GF1S(A)' The graph distance being a metric on the corresponding graph15 (if the 
phenomenological assumption of continuity of the FnS(A) graph is met), the reaction 
distance RD is a metric on FIS(A). 

Chemically interpreted, the reaction distance is the smallest number of elementary 
steps of reorganization of valence electrons during the reaction from the starting 
synthon to the final synthon. For instance, Scheme 1 derronstrates that if St{A) is 

I I 
-C-C--O-H ~111d S2(A) is :::C=C::': + (-llg-H, then RD(St(A), S2(A)) = 3. 

I I 

TABLE II 

Lower estimate of number of vertices in graph GF1S(A) for various s~ts A 

A 

{C} 
{C,C} 
{H, C, C} 
{H, C, C, Br} 
{H, C, C, C, Br} 

Lower estimate of number 
of vertices 

35 
1 225 
7350 

154350 
5402250 
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This concept has been employed in a similar context as the minimal number of unit 
reactions16. In that form, however, it cannot be used, e.g., as heuristic for the study 
of reaction mechanisms; moreover, the algorithm of the calculation has not been given. 

Generally, the concepts of the chemical distance (CD) and the reaction distance are 
not identical. The chemical distance mirrors the global number of valence electrons 
that "migrate" during the reaction, and it rather expresses the thermodynamic view 
upon the process under study. The reaction distance, on the other hand, is associated 
with the elementary processes of electron reorganization and concerns more the 
kinetic aspect of the process. The difference between the two distances is illustrated 
by Example 7. 

Example 7. Consider reactions represented by the following reaction schemes: 

A--B--C ~ A=B--C 

A--B--C ~ B--C-A 

(A) 

(B) 

Whereas CD = 4 for both reactions, RD = 1 for reaction (A) and RD = 2 for re
action (B). 

The above deficiency of the chemical distance concept may be one of the reasons 
that the principle of minimum chemical distance!? (PMCD) is not always accepted 
by the nature. 

In practice the RD cannot te calculated from the GFlS(A) graph using a computer 
because of the too large extent of this graph. The calculation of the RD is no trivial 
task; the treatment of this topic will be the subject of a forthcoming paper. 

CONCLUSIONS 

Mathematical modelling of chemical reality is prerequisite for a number of applica
tions, among them the computer assisted planning of organic syntheses. So far, the 
algebraic model by Dugundji and Ugi4 and its graph analogue by Kvasnickas- 7 

were sufficient for this purpose. The model proposed in this paper attempts to ap
proach the viewpoint of the synthesizing chemist by introducing the concept of 
unoccupied (virtual) atoms, contributing to the deductive power of the model and 
enabling one to choose concrete atoms or groups in particular cases treated. 

A next asset of the model is its ability to model in a natural manner the elementary 
steps of reorganization of valence electrons during chemical reactions, thereby 
employing another powerful weapon of the chemist-synthesist, viz. tl:e theory of 
reaction mechanisms. 

It is also noteworthy that the model is not combinatorial; instead, it is based on 
concrete valence states of atoms, described in the literature and hence, realistic. 
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Construing the constitutional chemistry of a set of atoms A as the chemistry of FIS(A), 
it is perhaps not inappropriate to call this model an algebraic model of realistic 
constitutional chemistry. 

The setting up of the model suggested has been provoked by numerous discussions with Associate 
Professor M. Kratochvil (Institute of Pure Chemicals, Lachema, Brno) on problems of computer 
aided planning of chemical syntheses and the role of mathematical models therein. Thanking Prof. 
M. Kratochvil is therefore more than a pleasant duty. 

Thanks are also due to Prof. V. Kvasnicka and Dr J. Pospichal (Slovak Institute of Technology, 
Bratislara) , Associate Professor M. Sekanina (Purkyne University, Brno), Dr L. Matyska (Insti
tute of Pure Chemicals, Lachema, Brno) , Dr C. Mazal and Dr E. Hladkd (Purkyne University, 
Brno) , who all contributed to the shaping of the author's concepts and ideas by stimulating com
ments. Philosophic discussions with Dr J. Jonas and Associate Professor P. Kubdcek (Purkyne 
Unil'ersity, Brno) concerning the model are also highly appreciated. 
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